DISEASE-MIRNA RELATIONSHIPS

Alexander Liang & Matt Laws Under Dr. Nestoras Karathanasis

INTRODUCTION

GOAL

 Text-mining miR-Disease Relations

- HMDD (Manual)
- miR2Disease (Manual)
- miR2Cancer (Incomplete)
- Our Goal
 - Automatic, Efficient

Public Med

Human microRNA Disease Database

Ep[•] miRBase

PROCESS

- Understanding the Field
- Learning R
- Reading Literature
- Extracting miRNA
- Finding Relation Sentences
- Evaluating Our Findings
- Cleaning Code

MIRNA

- Non-Coding Strand
- Roughly 18-28 Nucleotides
 Long
- Controls Gene Expression
- Dynamic Relationship With mRNAs

R Language

- Functional Oriented Language
- Data Analysis Program
- Useful Packages
- Widely Used for Bioinformatics

📲 💭 🚔 🧀 Go to file/function 🛛 🔯 - Addins -			
lexi_final_ish × 🖻 extra_acc_code.R* × 🖻 Untitled2* × 🔮 Untitled ≫ 👝 🗖	Environment History Co		
Source on Save 🔍 🎢 📲 🔤 🖬 🖬 🖬 Source 🔹 🗮	🚭 📑 📅 Import Dataset		
code_and_clean <- function(nesh, user_data, ground_data) {	🕼 Global Environment 🕒 🚺		
data_1 <<- ground_data	vec num [1:5]		
<- gsub("hsa-", "",ground_data_15min) data 2 mutatafarawad data 1 "Simulifiad minuk" - na baab	what chr [1:185		
concer <= cO	word NULL (enpt		
in user_dataSMESH) {	xsernum [1:109		
taString(i)	≭towa logi [1:68		
<pre>s.null(i) == TRUE) {next}</pre>	z "pineapple		
and death (A) Third Management (A) Anna anna Third	zeta "miR -375"		
grept(mesh, t) HKUL) {ts_tung_cancer <- c(ts_tung_cancer, HKUL)} a fis_lung_cancer <- c(is_lung_cancer_FALSED)	Functions		
<pre>c [cs]cong_concer s= c(cs_cong_concer, recory)</pre>	accuracy, function (
	char_che. function (
	co_occur., function (
<pre>to_table <- mutate(user_data, "Lung Cancer Relation" = is_lung_cance</pre>	generate. function (
HMDD data <- c)	Files Plots Packages		
<pre>in 1:(length(HMDD_auto_table\$PMID))) {</pre>	🔹 🔿 🏠 🔍 🔍		
(i)	R: Built-in Constants - Find a		
MDD_auto_table\$"lung Cancer Relation"[i] == TRUE) {	Constants (base) E		
_miR_HMUD_data <= c(all_miR_HMDD_data, unlist(str_split(HMDD_auto_ta)	concurrent formed		
e {next}	Built in Consta		
_HMDD_data <- unique(pll_miR_HMDD_data)	Built-In Consta		
records and cleaningshours data around data) a record of R Scott 5	<i>.</i> .		
	Description		
	Constants built into R.		
data <- function(user_abs, user_csv, table_name){	Usage		
	T.E (TEER 2		
ingr)	letters		
γr)	month.abb		
lot2)	month.name pi		
JRCATED]	F		
lena_clean <- function(mesh, user_data, ground_data) {	Details		
	R has a small number of bu		
	The following constants are		
	 LETTERS: the 26 up; of the Roman alphab 		
_and_clean(mesh, user_data, ground_data)			
<pre>cy_code_and_clean(nesh, user_data, ground_data) :</pre>	 letters: the 26 low of the Roman alphab 		
d_data' not found			

tempString = tempString.replace(imt pow(10,14-tmpFormat)))) tempString typeOfFID == "BUFFER"): s = value dataCal ring.replace("czFieldID",str(key)) temps specifil == "ASCII_STRING"): s = value det tempString = tempString.replace(" value=" in line and flagCheck sage>" in line: myEvent = Filename+"\n" if typeOfFi path.exists(path);

PROGRAMMING

PROGRAMMING

- pubmed.mineR package
- miRNA
- Disease/MeSH ID
- Relation
- Organism, Country, PMID

miRNA	[‡] Disease [‡]	Relationship
miR-21	lung cancer	CONCLUSIONS: MIR-21 expression levels in
miR-21	cancer	CONCLUSIONS: MiR-21 expression levels in
MiR-21	lung cancer	CONCLUSIONS: MiR-21 expression levels in
MiR-21	cancer	CONCLUSIONS: MiR-21 expression levels in
miR-21	lung carcinoma	NA
miR-21	cancer	In summary, our results suggest that miR-2
miR-21	lung cancer	In summary, our results suggest that miR-2
miR-24	lung carcinoma	NA
miR-24	cancer	In summary, our results suggest that miR-2
miR-24	lung cancer	In summary, our results suggest that miR-2
miR-30d	lung carcinoma	NA
miR-30d	cancer	In summary, our results suggest that miR-2
miR-30d	lung cancer	In summary, our results suggest that miR-2
miR-205	lung carcinoma	NA
miR-205	cancer	In summary, our results suggest that miR-2
miR-205	lung cancer	In summary, our results suggest that miR-2
miR-21	tumor	Our results suggest that itumor miR-21, mil
miR-21	lung cancer	NA
miR-21	cancer	While the level of serum miR-21 was increas
miR-21	NSCLC	Our results suggest that tumor miR-21, mil
miR-21	lymph node metastasis	Overexpression of serum miR-21 was stron
miR-200c	tumor	In addition, this study, for the first time, ide
miR-200c	lung cancer	NA
miR-200c	cancer	While the level of serum miR-21 was increas
miR-200c	NSCLC	In addition, this study, for the first time, ide
miR-141	tumor	Our results suggest that itumor miR-21, mil

MIRNA EXTRACTION

```
contextSearch(subsetabs(liverCancer,a), c("miRNA","mir","m
if (file.exists("companion.txt")==FALSE) {
 next #if no miRNA found, next
} else {
  rnasearch <- read_file("companion.txt")</pre>
 rnasearch <- strsplit(rnasearch," ")[[1]]</pre>
 mir <- grep("miR", ignore.case = TRUE, rnasearch, value</pre>
 mir <- paste(c(mir,grep("let", ignore.case = TRUE, rnase</pre>
```

Extract Sentences: contextSearch()

Extract miRs: grep()

mir-21/22

Clean miR List

Slashed mir-21/mir-22 Attached Numberless

Special characters

mir-21-overexpressed mir, miRNA, antimiR, oncomiR

miR-2I, (miR-2I)

RELATION EXTRACTION

```
for (i in 1:length(mir)) { #for loop within fo
  for (j in 1:length(diseases)) { #for loop al
    unlink("testco_occurrence.txt")
    #search for co-occurence between one disea
    diseaseTerm <- substr(x=diseases[j], start</pre>
                           stop=which(strsplit(
    #extract MESH of disease, sometimes is "No
    if (grepl(pattern = "[[:digit:]]", disease
      MESH <- "No Data"
    } else {
      MESH <- substr(x=diseases[j], start=whic</pre>
                      stop=nchar(diseases[j]))
    co_occurrence_fn(mir[i], subsetabs(liverCa
```

- Nested for loops
- Extract Sentences:co occurrence fn()
- Filter Sentences:
 - read_lines()
 - strsplit()
 - grep()

RESULTS

PMID 🍼	Disease 🗘 🗘	MESH 🗘	miRNA 🗘	Relation	Organism 🗘	Country 🗘
30256056	chronic hepatitis	D056487	miR-34a	So both miR-34a and miR-183 were suit	Human	India
30256056	Cirrhosis	D005355	miR-34a	So both miR–34a and miR–183 were suit	Human	India
30256056	chronic hepatitis	D056487	miR-183	So both miR–34a and miR–183 were suit	Human	India
30256056	Cirrhosis	D005355	miR-183	So both miR-34a and miR-183 were suit	Human	India
30127924	hepatocellular carcinoma	D006528	miR-122	Exosomal microRNAs (miRNAs) have bee	Human	Japan
30127924	нсс	D006528	miR-122	Exosomal microRNAs (miRNAs) have bee	Human	Japan
30127924	нсс	D006528	miR-122	Taken together, our results demonstrate	Human	Japan
30127924	tumor	D009369	miR-122	The expression levels of exosomal miR	Human	Japan
30127924	liver cirrhosis	D008103	miR-122	According to the median relative expres	Human	Japan
30127924	liver cirrhosis	D008103	miR-122	Taken together, our results demonstrate	Human	Japan
30127924	hepatocellular carcinoma	D006528	miR-21	Exosomal microRNAs (miRNAs) have bee	Human	Japan
30127924	нсс	D006528	miR-21	Exosomal microRNAs (miRNAs) have bee	Human	Japan
30065664	Hepatocellular Carcinoma	D006528	mir-21	Extracellular Vesicle-Associated mir-21	Human	China/Au

Comprehensive Data Frame

- Relation & Non-Relation Time-efficient Versions
- Applicable to Multiple Diseases

DIFFICULTIES

- Finding the correct package
- Filtering out smaller problems
- Combining major parts of code
- Formatting miRNAs to match HMDD

nic/ 📣 attle") ito '/usr/local/lib/R/3.2/site-library' ied) lependency 'RGtk2' ied % Xferd Average Speed Time Time Current Time Dload Upload Total Spent Left Speed ------۵ Ø 0 0 43 1188k 796k 0:00:01 0:00:02 9k Ø 0 0:00:03 -- 1355k ed % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed ۵ 0 0 --:--:--228k)2k 13 339k 0 Ø 0:00:11 0:00:10 0:00: 08 241k 34 2602k 908k 0 252k 0:00:10 0 34 0 0:00:04 0:00:04 311k 76 2602k 76 1980k 350k 0 Ø 0 0:00:06 0:00:06 --:-- 481k package 'RGtk2' ... iccessfully unpacked and MD5 sums checked ig... /usr/local/bin/pkg-config s at least version 0.9.0... yes CTION... no 10 (version 2.8.0 required failed for package 'RGtk2' il/lib/R/3.2/site-library/RGtk2' ickages : :kage 'RGtk2' had non-zero exit status itk2' is not available for package 'rattle' il/lib/R/3.2/site-library/rattle' ickages : :kage 'rattle' had non-zero exit status packages are in

/folders/cz/9kx_fjf17492w0m696hfhs_80000gp/T/RtmptwVspk/downloaded

EVALUATION

METHODOLOGY

- Evaluate the significance of the findings
- Compare to existing databases
- Conclude if the data is reliable enough for use

COMPARISON

- Baseline: HMDD Abstracts
- Official **mirList** and our **mymirList**
- Expected Systematic Error

Examples of TP, FN, FP TP: "mir-21" in both mirList & mymirList FN: "mir-26a" only in mirList FP: "let-7e" only in mymirList for (check in 1:length(mi if (any(grepl(pattern TP = TP+1tpositive <- append()next if (all(grepl(pattern FN=FN+1fnegative <- append() next FP=length(mymirList)-TP

STATISTICS

	ТР	FN	FP	RECALL	PRECISION	FSCORE
Alex Liver	71	10	46	0.877	0.607	0.717
Matt Liver	50	39	18	0.562	0.735	0.634
Alex Lung	38	14	6	0.731	0.864	0.792
Matt Lung	31	25	12	0.554	0.721	0.626

IMPROVEMENTS

PROGRAMMING

- Difficult miR keywords
 - "miR-29c/DNMTs/miR-34c\ \449a"
 - "miR-106a/b"
- let- miR terms
- Difficult Abstracts
 - Language
- Disease & MeSH ID Matching

```
_check_fn <-
nction(x){allcheck <- c(letters[1:26],
/1 <- allcheck != 'r'
.check <- allcheck[key1]</pre>
```

```
v_test <- c()
rd <- c()
rd <- c()
rd in x){
nirstring_split <- strsplit(i, "")[[1]]
for (j in mirstring_split){
logic <- j == allcheck
if (any(logic) == FALSE) {
    if (j =="r"){j="R"}
    else {j=""}}
word <- paste(word, j, sep="")</pre>
```

```
new_test <- append(new_test, word)
word <- c()
```

```
v_test <- unique(new_test)
:urn(new_test)
```

EVALUATION

- Source of False Negative
 - Paper Access
- Crosscheck Databases
- Family miRNA terms
 - "mir-l" & "mir-l-l"
 - "mir-200" & "mir-200a"
 - "mir-26a" & "mir-26a-1"

GENERAL

- Data Visualization via Cytoscape
- Online Database (HMDD)
- Relevant Data Table Features
 - Positive/Negative Relation
 - Relation Extraction
 Methodology

Thank you Dr. Karathanasis and the rest of the Jefferson Computational Medicine Center!

-Matt Laws & Alex Liang